

Third Semester B.E. Degree Examination, January 2013 Logic Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.			
PART – A			
1	a.	Realize XOR gate using NAND gates.	(06 Marks)
	b.	Obtain minimal expression from the following SOP using K-map method	
		$f(A, B, C, D) = \sum m(1, 4, 5, 6, 7, 10, 11, 13) + \sum d(9, 3, 14).$	(07 Marks)
	c.	c. Obtain minimal expression from the following SOP using Quine Mc Cluskey's r	
		$F(A, B, C, D) = \sum m(1, 3, 4, 5, 6, 7, 13, 15).$	(07 Marks)
2	a.	Realize 4:1 MUX using verilog HDL.	(06 Marks)
	b.	Write circuit diagram and explain the BCD – To – Decimal decoder.	(07 Marks)
	c.	Explain odd parity generation with the help of diagram. How do you convert	it to even
		parity generator.	(07 Marks)
3	a.	Write verilog HDL program for full adder.	(05 Marks)
	b.	Write circuit diagram of 4-bit parallel adder/subtractor circuit and explain.	(07 Marks)
	c.	What are fast adders? Draw and explain 2-bit fast adder circuit diagram.	(08 Marks)
4	a.	Realize the edge triggered flip-flop of JK type using verilog HDL.	(06 Marks)
	b.	Write the conversion procedure for converting RS flip-flop to JK flip-flop.	(07 Marks)
	c.	Derive the characteristic equation for SR flip-flop.	(07 Marks)
		PART – B	
5	a.	Realize 4-bit shift right register using verilog HDL.	(06 Marks)

- 5 a. Realize 4-bit shift right register using verilog HDL. (06 Marks)
 - b. Explain SIPO register configuration with the help of diagram and sequence table (state table) or waveforms. (07 Marks)
 - c. Realize 3 bit up-down asynchronous counter with the help of flip-flop and explain.

(07 Marks)

- 6 a. Write and briefly explain Melay and Moore models in sequential logic system. (04 Marks)
 - b. Write Melay state transition diagram, state table, k-maps and the circuit diagram for detection of three-bit sequence 110. (10 Marks)
 - c. i) What is an ASM chart?
 - ii) Discuss the problems related to asynchronous sequential circuits. (06 Marks)
- 7 a. Explain 4-stage R-2R ladder circuit used for A-D conversion, calculate its resolution.

(10 Marks)

- b. Write a block diagram to explain counter method A/D conversion. (10 Marks)
- 8 a. Explain TTL NAND gate circuit diagram. Verify the circuit diagram with reference to Nand gate truth table. (08 Marks)
 - b. Discuss TTL-to-CMOS and CMOS-to-TTL interface. (08 Marks)
 - c. Write notes on switching circuits. (04 Marks)